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Resumen

En este estudio se examind la situacion de la Central Termogas Machala. El desafio del proyecto
consiste en superar grandes desafios para asegurar la continuidad y asegurar un suministro
eficaz de energia eléctrica, asi como el uso eficiente de los recursos naturales y la reduccién del
impacto ambiental. La central termogas Machala opera en ciclo combinado, dispone de 8
unidades generadoras correspondientes a Machala | y Machala Il, con una potencia total de 187
MW. Utilizando la programaciéon en Python y la libreria Pyomo para el proceso de optimizacion,
se pudo examinar las variables de costos de combustible, potencia y energia eléctrica de la
planta. La meta principal es reducir los costos de produccion de energia eléctrica y las
limitaciones estan vinculadas a los costos de inicio, parada y el equilibrio de potencia. Ademas,
para solucionar el problema se utiliza GNU Linear Programming Kit (GLPK), ya que el tipo de
programacion sugerido es entero lineal mixta. Mediante el andlisis efectuado, se pudo determinar
qué generadores térmicos pueden funcionar simultdneamente, elaborar planes de
mantenimiento para la salida programada de estos generadores y determinar la energia total
generada.
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Abstract

This study examined the situation of the Termogas Machala power plant. The challenge of the
project is to overcome major challenges to ensure continuity and ensure an efficient supply of
electricity, as well as the efficient use of natural resources and the reduction of environmental
impact. The Machala thermal power plant operates in a combined cycle, has 8 generating units
corresponding to Machala | and Machala Il, with a total power of 187 MW. Using Python
programming and the Pyomo library for the optimization process, it was possible to examine the
variables of fuel, power and electric energy costs of the plant. The main goal is to reduce the
electrical energy production costs, and the constraints are linked to the startup, shutdown and
power balance costs. In addition, GNU Linear Programming Kit (GLPK) is used to solve the
problem, since the type of programming suggested is mixed linear integer. Through the analysis
carried out, it was possible to determine which thermal generators can operate simultaneously,
to develop maintenance plans for the scheduled output of these generators and to determine the
total energy generated.
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1. Introduccién

In Ecuador, one of the regulatory
entities is the Agency for the
Regulation and Control of Energy
Natural
Resources (ARCERNNR) [1], whose

and Non-Renewable

objective is to regulate various
strategic sectors of the nation.
Among these is the electricity sector,
which has several control
directorates. = The Directorate of
Control and Distribution of Electricity
Sector Commercialization
(DCDCSE), which oversees the use
of electricity-by-electricity distribution
companies nationwide. One of the
responsibilities of the directorate is
the billing process, which contains a
large amount of data.  Another
relevant factor that the management
considers is energy consumption
trends, this analysis optimizes the
control procedures carried out by the

management [2].

Nowadays, electrical energy is a very
common type of energy worldwide,
since it is used both in the industrial
sector and in most homes [3].
Electrical energy can be generated in
a variety of ways, so it cannot be
categorized as a renewable or non-
renewable energy source. However,

most energy production is

concentrated in specific locations,
which we call power generation

plants [4].

The application of  various
technological tools facilitates the
improvement and automation of
numerous manual processes that are
still carried out in an impractical
manner. Similarly, the use of data
obtained by management facilitates
the projection of the country's energy
consumption [5]. Machine Learning
is a field that encompasses various
disciplines of knowledge, including
Deep Learning, which offers a wide
variety of models and algorithms for
different purposes. Time series
represent a challenge that can be
solved by intelligence algorithms.
These models focus on the ability to
train on a volume of data and then
predict values based on the training

data [6].

The procedure of estimating energy
intake in Ecuador's electricity sector
poses considerable challenges due
to the volume of data produced
monthly by the electricity distribution
companies [7], as well as the
requirement for accurate analysis
Although the
Control and

and projections.
Directorate of

Distribution of Electricity Sector
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Commercialization (DCDCSE) has
access to an enormous volume of
data, manual handling and analysis

of this data is laborious and error [8].

The challenge of the project is to take
on major challenges to maintain
continuity and ensure an efficient
supply of electricity, the efficient use
of natural resources and the
reduction of the impact on the
environment. The Machala thermal
power plant operates in a combined
cycle with a total capacity of 187 MW.
Currently, electricity consumption is
steadily increasing, and gas
shortages at the Machala thermal
power plant mean that there is not
enough gas to cover the maximum

production demand [9].

In contrast, today, electrical service
from Ecuador's power generation
plants has declined due to
generation shortages [2], lack of
maintenance and facility
improvement plans. The Machala
combined cycle thermoelectric plant
has the ability to convert thermal
energy from fuel gases into electrical
energy. This term is applied to plants
that use natural gases as fuel and
use gas and steam turbines to

produce electricity [10].

Machine learning, through the
required calculations, can acquire
behavioral patterns and algorithms,
taking into account the PYOMO
Python library to solve optimization

challenges.

The objective of this study is to
establish through an analysis the
state estimation to optimize the
operation of the Machala thermal
power plant through the use of
machine learning. The objective is: to
establish the state estimation in the
Machala thermal power plant [11]; to
carry out the data collection of the
Machala thermal power plant; to
carry out a maintenance planning
and operation tests of the Machala
combined cycle thermal power plant,
by means of a machine learning

system [12].

2. Metodologia

The process of construction and
operation of the Machala
Thermoelectric Power Plant began
on July 2, 1996, with the signing of
the Energy

Corporation (EDC) with the State of

Development

Ecuador for the extraction of natural

gas in the Gulf of Guayaquil.
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The Machala thermogas production
plantis located in the Bajo Alto sector
of the Tendales parish, Canton El
Guabo, Province of El Oro, as shown

in Figure 1.

Fig. 1. Machala Thermal Power Plant

A. Characteristics of the Machala

Thermogas Power Plant

The Termogas Machala power
station operates with gas obtained
from the Gulf of Guayaquil. Unitil
early 2011, the plant produced more
than 130 MW of energy that is
supplied to the National
Interconnected System (SNI) and
subsequently distributed to end

users.

The Machala thermoelectric plant
has two zones known as Machala 1
and Machala 2, where, as shown in
Figure 1, the 6FA natural gas
production units are located, along

with 6 TM2500 gas production units.

The Machala Gas Plant has the

effective power detailed in Table I:

TABLE I. EFFECTIVE POWER
CENTRAL TERMOGAS MACHALA

. Effective
Central Unit Power MW

6FAl1 64.6

Machala | e )5 64.6
™1 20
T™M2 20
T™3 20
Machala Il ™2 0
TM5 20
T™M6 19

Total 248.2

B. Development of the

optimization model

Bender’s algorithm is employed to
solve the proposed optimization
problem, this algorithm facilitates the
solution of mixed integer nonlinear

problems [13].

The GLPK tool, the GNU Linear
Programming Kit, an open-source
software intended for solving large
linear optimization problems and
mixed integer linear mixed

programming problems, is used [14].
C. Problem master

It is stated in equation (1).
Minimizar, g f;(x) + 6

subject to

p(x) <0
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0> f,(Y® D) + Ty (o -
S B €Y
6=>0
Where:
e 6. continuous and positive
variable.

e v:iteration index of the algorithm.

. x,E""l): constant value taken by
the variable x in the interaction v-
1.

o« Yy cost

sensitivities
associated with the constraints
that set the value of the
complication variables.

e Y®-D: constant value taken by
the variable when solving the
Benders subproblem at iteration

v-1 [15].

When solving the main problem, the
value of the complication variables
X® is obtained, as well as the value
of the cost close to the subproblem
6@, The solution of the main
problem incorporates the Bender
Cuts procedure, which are
constraints that iteratively
reconstruct the initial problem

function [16].

The solution of the main problem and
the Benders subproblem demand a
coupling process, also known as

information exchange. The

information  acquired by the
subproblem is transmitted to the
main Benders problem to get a better
interpretation of the original function,

as illustrated in Figure 2 [17].

Fig. 2. Bender Decomposition information
exchange coupling process

PROBLEMA MAESTRO
DE BENDERS

FYE9

% )

S W AUNIEA 31S0D
130 D¥DQIMNBIENES A SIS0

SUBPROBLEMA
DE BENDERS

VARIABLES DE COMPLUCACION
-

MEH 2N 30 SIATE YA

D. End of iterations

The iterative process ends when the
lower and upper dimensions meet at
a point or are close to the limits. In
each iteration, the initial problem
dimensions are updated with the
resolution of the main problem and
Benders'  subproblem. The
procedure in the algorithm depicted

in the flow chart in Figure 3 [18].
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Fig. 3. Benders decomposition flowchart

Solving Benders' Master Problem |

Updating Complicating
arapies

Add New Benders Cut to Master
Problem

E. Function Objective

The

objective function (J) is

represented in equation 2 [19].

J =Xl Cr X Pf+ CA x Y +CF x

Vl{qt

@)

Where:

U: binary coupling variable.

Cr: total production costs.

P}: power generated by the g- th
thermal unit at time t.

CgA: fixed cost of starting the g- th
thermal unit.

Y;: binary variable associated
with the coupling of the g-th
thermal unit (1= starts, 0= does
not start).

C;’: fixed cost of stopping the g-
th thermo-unit.

W : binary variable associated

with the shutdown of the g-th
thermo-unit (1= is shutdown, 0=

is not shutdown).
F. Restrictions

The constraints are linked to a power
balance linked to the minimum and
maximum power limit of the
thermoelectric generators. In
addition, constraints are added by
generator startup and shutdown
costs, as discussed in equations 3
and 4 [20].

Eg“" < Eg < E;"ax (3)
Costs
Cong X Y§ = Con, (Y = Y57") (4)

Corf.a X Wy = Cogy ,(Wy — WF™)
Where:

Con q. Start-up cost of generating

units.

Cofra- cost of stopping the

generating unit.

Y;: binary variable associated with

the coupling of the g-th thermal unit
(1= starts, 0= does not start) [21].

Wj: binary variable associated with

the shutdown of the g-th thermal unit

(1=is shutdown, 0= is not shutdown).
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In general, with respect to the
coupling logic constraints for each
thermal be

generator, it must

considered that:

a) If the thermal unit is coupled in
period (t-1) and also coupled in
period (t), the unit was already
operating in (t-1).

b) If the thermal unit is coupled in

c) If the thermal unit is decoupled in
period (t-1) and coupled in period
(t) then the unit was started in (t).

d) If the thermal unit is decoupled in
period (t-1) and also decoupled
in period (t) then no start-up has

been performed [22].

For the programming the data

expressed in tables 2 to 5 are used.

period (t-1) and uncoupled in

period (t), the unit stopped in (t).

TABLE Il. DEMAND REQUIRED PERIOD 2015-2022

YEAR DEMAND [kW]
2015 800000
2016 560000
2017 780000
2018 890000
2019 450000
2020 560000
2021 630000
2022 660000
TABLE Ill. FUEL CONSUMPTION PER KWH
YEAR/TEAM 2015 2016 2017 2018 2019 2020 2021 2022
6FA1 489455 | 4889.3 | 5362.7 |5776.85|4161.13 | 4193.44 | 4097.86 | 2310.39
6FA2 1343.29 | 4692.4 |4964.54|4976.93 | 3929.96 | 1490.87 | 1569.73 | 1725.51
T™M1 1667.91 | 1475.6 |1274.79| 621.01 | 617.99 |1064.75| 17.6 0
T™M2 1356.64 |1639.63|1145.69| 589.72 | 337.86 | 553.61 | 277.54 | 357.43
T™M3 1613.96 | 892.42 | 884.73 | 976.86 | 400.1 | 571.88 | 141.83 | 1065.48
T™4 1363.04 | 1538.02|1266.58 | 844.65 | 415.38 | 450.55 | 725.99 | 800.39
TM5 1053.41 | 940.94 | 987.83 | 263.06 | 406.54 | 802.06 |1232.92 | 744.46
TM6 0 536.63 | 260.63 | 38.5 4559 | 214.01 | 9.93 69.15

566



Cruz et al. (2025)

TABLE IV. FUEL COST (CTVS/KWH)

YEAR/TEAM 2015 2016 2017 2018 2019 2020 2021 2022
6FA1 0.0355 | 0.0356 | 0.0353 | 0.0354 | 0.0354 | 0.0354 | 0.0357 | 0.0359
6FA2 0.0355 | 0.0356 | 0.0354 | 0.0355 | 0.0354 | 0.0354 | 0.0358 | 0.0000
T™M1 0.0354 | 0.0354 | 0.0353 | 0.0354 | 0.0355 | 0.0354 | 0.0358 | 0.0360
T™M2 0.0353 | 0.0351 | 0.0352 | 0.0355 | 0.0355 | 0.0354 | 0.0358 | 0.0360
TM3 0.0355 | 0.0354 | 0.0354 | 0.0356 | 0.0355 | 0.0354 | 0.0358 | 0.0360
T™M4 0.0354 | 0.0352 | 0.0352 | 0.0354 | 0.0355 | 0.0354 | 0.0358 | 0.0360
TM5 0.0354 | 0.0354 | 0.0355 | 0.0355 | 0.0355 | 0.0354 | 0.0358 | 0.0360
TM6 0.0000 | 0.0357 | 0.0360 | 0.0358 | 0.0357 | 0.0357 | 0.0358 | 0.0364

TABLE V. NET ENERGY [KWH]

YEAR/TEA
v 2016 2017 2018 2019 2020 2021 2022
SEAL 427093.4 | 440357.4 | 488657.1 | 518791.5 | 373367.2 | 371937.4 | 353363.7
28 86 8 65 67 67 59
SEAD 416881.7 | 413944.2 | 437756.8 | 423601.9 | 325645.2 | 127765.2 0
96 36 28 71 66 49
ML 124360.9 | 137677.2 | 117294.7 | 55594.87 | 55099.17 | 94424.80 | 1527.739
29 76 72 01 41 16 27
158781.9 | 154873.0 | 111942.1 | 54688.33 | 32153.88 | 48659.95
T™2 24353
25 18 23 7 18 89
126438.3 | 81491.33 | 79474.25 | 84667.30 50720.67 | 13038.41
T™3 35401.02
64 36 2 63 37 84
™A 153224.1 | 143980.6 | 118878.2 | 75467.96 | 37558.70 | 40089.36 | 60928.74
01 59 66 5 24 92 57
™S 126964.9 | 86230.25 | 94333.77 | 22936.11 | 37145.68 | 67843.25 | 100771.3
84 78 23 18 09 18 5
96792.55 | 48149.96 | 22075.10 | 2993.169 18768.23 | 6077.834
TM6 5.725097
95 65 85 08 82 74
3. Resultados y discusion yielded the results described in Table
VI.

Mixed integer linear programming,
performed in Python-Pyomo with the

equations described in Section 2,
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TABLE VI. NELECTRIC POWER FROM EACH THERMAL GENERATOR AT TERMOGAS MACHALA
THERMAL POWER STATION

ENERGIA OPTIMA [kWh]
ANO/EQUI
T1 T2 T3 T4 T5 T6 T7 T8
PO
488657. | 466398. | 345299. | 371937. | 353363.
6FA1 0 0 0
18 03 42 47 76
392957. 423601. 128321.
6FA2 0 0 0 0 0
19 97 46
113940. 133805.
™1 0 0 0 0 88681.9 0
22 17
141854. | 158781. | 154873. 32153.8 | 48659.9
T™2 0 0 0
32 92 02 8 6
82611.3 79996.9 | 78130.7 35401.0 | 50720.6
T™3 0 0 0
1 4 8 2 7
114269. | 153224. | 143980. | 118878. 47543.4
™4 0 0 0
46 1 66 27 2
116394. 94333.7 37145.6 100771.
T™M5 0 0 0 0
39 7 8 35
95036.7 | 47344.2
T™6 30930.3 o L 0 0 0 0 0

In order to optimally satisfy the power depending on the demand required,

demand of the plant, not all the generators will be coupled, as

generators will operate shown in the graph in Figure 4:

simultaneously. Therefore,

Fig. 4. Optimal energy Machala Thermogas Power Plant

Energia 6ptima de cada generador
termoeléctrico de la Central Termogas Machala
aoo0a0
@ Periodo
S00000 _ maFal
|
400000 BRe2
T
300000 BTz
200000 @TMS
o Hmw Hu H-u m o
BTMS
5 H | mu U d]
m|TE
1 2 3 4 5 [ 7 a
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- Period 1:

With a total electrical generation of
600 MWh, generators TM1, TM2,
TM3, TM4, TM5 and TM6 are
coupled, with a demand of 119 MW.

- Period 2:

With a total electrical generation of
800 MWh, generators 6FA2, TM2,
TM4 and TM6 are coupled with a
demand of 124 MW.

- Period 3:

With a total electrical generation of
560 MWh, generators TM1, TM2,
TM3, TM4 and TM6 are coupled, with
a demand of 99 MW.

- Period 4:

With a total electrical generation of
780 MWh, generators 6FAl, TM3,
TM4 and TM5 are coupled with a
demand of 125 MW.

- Period 5:

With a total electrical generation of
890 MWh, generators 6FAl1 and
6FA2 are coupled, with a demand of
130 MW.

- Period 6:

With a total electrical generation of
450 MWh, generators 6FAl, TM2,
TM3 and TM5 are coupled with a
demand of 125 MW.

- Period 7:

With a total electrical generation of
560 MWh, generators 6FAl, TM1,
TM2 and TM3 are coupled, with a
demand of 125 MW.

- Period 8:

With a total electrical generation of
630 MWh, generators 6FAl, 6FA2,
TM4 and TM5 are coupled with a
demand of 170 MW.

A. Verification

The results are verified using the
GAMS payment software. Figure 5
shows the information of both the
problem and the SOLVE; 129
variables are examined, 137
constants are considered and there

is an objective function.
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Fig. 5. Information on the problem posed.

Problem:

- Mame: unknown
Lower bound: 242251.172551
Upper bound: 242251.172551
Humber of objectiwves: 1
Number of constraints: 137
Number of wariables: 129
Number of nonzeros: 319
Sense: minimize

Solver:
- Status: ok
Terminaticon condition: optimal
Statistics:
Branch and bound:
Number of bounded subproblems: 5427
Number of created subproblems: 5427
Error rc: @
Time: 9.48218424797058165

The image in Figure 6 shows the
results obtained from the
optimization process, the results
when compared with Table VI are

exactly the same.

Fig. 6. Results obtained

Solutieon:
- number of solutions: 1
number of solutions displayed: 1
- Gap: 8.8
Status: optimal
Message: None
Objective:
obj:
Yalue: 242251, 17255160608
Yariable:
E[GL,T4]:
Yalue: 488657.18
E[GL1,T5]:
VYalue: 466398.63
E[GL1,TE]:
VYalue: 345295.42
E[GL1,T7]:
Yalue: 371937.47
E[GL1,TE]:
Yalue: 353363.76
E[G2,T2]:
Yalue: 392957.1%9
E[G2,T5]:
Yalue: 4236811.97
E[G2,TE]:
Yalue: 128321.46
E[G3,T1]:
Yalue: 11394@8.22
E[G3,T3]:
Yalue: 133865.17

4. Conclusiones

Currently, the Termogas Machala
power plant generates 630 MWh of
electricity through the operation of
thermal generators 6FAl, 6FA2,
TM4 and TM5. In 2022, the TM6
generator is not in operation and,
according to the research carried out,
it will be put into operation with the

expansion project by 2024.

The optimization was carried out
based on fuel costs and the energy
produced resulted in an ideal annual
average of 242.25 MWh, which
establishes an appropriate operation
of the Thermogas Power Plant, with
combined cycle. It is important to
note that the average fuel cost is
0.036 ctvs/kWh.

According to the results obtained, the
maintenance and tests to be carried
out will depend on the coupling or not
of certain thermal generators
according to the required demand.
For example, in period 6 the
generators 6FA1,TM2, TM3 and TM5
are coupled, while in the same period
they must be tested and the
corresponding maintenance and

tests must be carried out.

By implementing an algorithm using

the Python programming language
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and the Pyomo library, it was
possible to establish the coupling of
heat generators according to the
necessary economic dispatch and

fuel cost.

The use of Bender's decomposition
method is one of the many
alternatives for solving mixed linear
integer  optimization  problems,
although it is more frequently used in
education to explain the procedure
necessary to solve such problems.
Other algorithms can be used to
solve these problems, although the
one used in this study is less
complicated and more effective in

solving the problem.
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