Revista Científica ‘‘INGENIAR”: Ingeniería, Tecnología e Investigación. Vol. 8 Núm. (15) 2025. ISSN: 2737-6249  
Evaluación del Estado en la Central Termogas Machala a través Machine Learning.  
EVALUACIÓN DEL ESTADO EN LA CENTRAL TERMOGAS MACHALA A  
TRAVÉS MACHINE LEARNING  
CONDITION ASSESSMENT AT TERMOGAS MACHALA POWER PLANT  
THROUGH MACHINE LEARNING  
1
2
3
Cruz Néstor Xavier ; Quinatoa Carlos Iván ; Porras Jefferson  
1
Universidad Técnica de Cotopaxi. Latacunga, Ecuador. Correo: nestor.cruz2@utc.edu.ec.  
2
3
Resumen  
En este estudio se examinó la situación de la Central Termogas Machala. El desafío del proyecto  
consiste en superar grandes desafíos para asegurar la continuidad y asegurar un suministro  
eficaz de energía eléctrica, así como el uso eficiente de los recursos naturales y la reducción del  
impacto ambiental. La central termogas Machala opera en ciclo combinado, dispone de 8  
unidades generadoras correspondientes a Machala I y Machala II, con una potencia total de 187  
MW. Utilizando la programación en Python y la librería Pyomo para el proceso de optimización,  
se pudo examinar las variables de costos de combustible, potencia y energía eléctrica de la  
planta. La meta principal es reducir los costos de producción de energía eléctrica y las  
limitaciones están vinculadas a los costos de inicio, parada y el equilibrio de potencia. Además,  
para solucionar el problema se utiliza GNU Linear Programming Kit (GLPK), ya que el tipo de  
programación sugerido es entero lineal mixta. Mediante el análisis efectuado, se pudo determinar  
qué generadores térmicos pueden funcionar simultáneamente, elaborar planes de  
mantenimiento para la salida programada de estos generadores y determinar la energía total  
generada.  
Palabras clave: Central Termogas, Ciclo Combinado, Pyomo, Python, Optimización.  
Abstract  
This study examined the situation of the Termogas Machala power plant. The challenge of the  
project is to overcome major challenges to ensure continuity and ensure an efficient supply of  
electricity, as well as the efficient use of natural resources and the reduction of environmental  
impact. The Machala thermal power plant operates in a combined cycle, has 8 generating units  
corresponding to Machala I and Machala II, with a total power of 187 MW. Using Python  
programming and the Pyomo library for the optimization process, it was possible to examine the  
variables of fuel, power and electric energy costs of the plant. The main goal is to reduce the  
electrical energy production costs, and the constraints are linked to the startup, shutdown and  
power balance costs. In addition, GNU Linear Programming Kit (GLPK) is used to solve the  
problem, since the type of programming suggested is mixed linear integer. Through the analysis  
carried out, it was possible to determine which thermal generators can operate simultaneously,  
to develop maintenance plans for the scheduled output of these generators and to determine the  
total energy generated.  
Keywords: Combined cycle, Pyomo, Python, Optimization, Thermogas Plant.  
Información del manuscrito:  
Fecha de recepción: 14 de febrero de 2025.  
Fecha de aceptación: 24 de abril de 2025.  
Fecha de publicación: 10 de mayo de 2025.  
560  
Cruz et al. (2025)  
1
. Introducción  
concentrated in specific locations,  
which we call power generation  
plants [4].  
In Ecuador, one of the regulatory  
entities is the Agency for the  
Regulation and Control of Energy  
The  
application  
of  
various  
technological tools facilitates the  
improvement and automation of  
numerous manual processes that are  
still carried out in an impractical  
manner. Similarly, the use of data  
obtained by management facilitates  
the projection of the country's energy  
consumption [5]. Machine Learning  
is a field that encompasses various  
disciplines of knowledge, including  
Deep Learning, which offers a wide  
variety of models and algorithms for  
and  
Non-Renewable  
Natural  
Resources (ARCERNNR) [1], whose  
objective is to regulate various  
strategic sectors of the nation.  
Among these is the electricity sector,  
which  
directorates.  
Control and Distribution of Electricity  
Sector Commercialization  
DCDCSE), which oversees the use  
has  
several  
control  
The Directorate of  
(
of electricity-by-electricity distribution  
companies nationwide. One of the  
responsibilities of the directorate is  
the billing process, which contains a  
different purposes.  
Time series  
represent a challenge that can be  
solved by intelligence algorithms.  
These models focus on the ability to  
train on a volume of data and then  
predict values based on the training  
data [6].  
large amount of data.  
Another  
relevant factor that the management  
considers is energy consumption  
trends, this analysis optimizes the  
control procedures carried out by the  
management [2].  
The procedure of estimating energy  
intake in Ecuador's electricity sector  
poses considerable challenges due  
to the volume of data produced  
monthly by the electricity distribution  
companies [7], as well as the  
requirement for accurate analysis  
Nowadays, electrical energy is a very  
common type of energy worldwide,  
since it is used both in the industrial  
sector and in most homes [3].  
Electrical energy can be generated in  
a variety of ways, so it cannot be  
categorized as a renewable or non-  
renewable energy source. However,  
and projections.  
Directorate of  
Distribution of Electricity Sector  
Although the  
Control and  
most  
energy  
production  
is  
561  
Revista Científica ‘‘INGENIAR”: Ingeniería, Tecnología e Investigación. Vol. 8 Núm. (15) 2025. ISSN: 2737-6249  
Evaluación del Estado en la Central Termogas Machala a través Machine Learning.  
Commercialization (DCDCSE) has  
access to an enormous volume of  
data, manual handling and analysis  
of this data is laborious and error [8].  
Machine learning, through the  
required calculations, can acquire  
behavioral patterns and algorithms,  
taking into account the PYOMO  
Python library to solve optimization  
challenges.  
The challenge of the project is to take  
on major challenges to maintain  
continuity and ensure an efficient  
supply of electricity, the efficient use  
of natural resources and the  
reduction of the impact on the  
environment. The Machala thermal  
power plant operates in a combined  
cycle with a total capacity of 187 MW.  
Currently, electricity consumption is  
The objective of this study is to  
establish through an analysis the  
state estimation to optimize the  
operation of the Machala thermal  
power plant through the use of  
machine learning. The objective is: to  
establish the state estimation in the  
Machala thermal power plant [11]; to  
carry out the data collection of the  
Machala thermal power plant; to  
carry out a maintenance planning  
and operation tests of the Machala  
combined cycle thermal power plant,  
by means of a machine learning  
system [12].  
steadily  
increasing,  
and  
gas  
shortages at the Machala thermal  
power plant mean that there is not  
enough gas to cover the maximum  
production demand [9].  
In contrast, today, electrical service  
from Ecuador's power generation  
plants has declined due to  
generation shortages [2], lack of  
2. Metodología  
maintenance  
and  
facility  
The process of construction and  
improvement plans. The Machala  
combined cycle thermoelectric plant  
has the ability to convert thermal  
energy from fuel gases into electrical  
energy. This term is applied to plants  
that use natural gases as fuel and  
use gas and steam turbines to  
produce electricity [10].  
operation  
of  
the  
Machala  
Thermoelectric Power Plant began  
on July 2, 1996, with the signing of  
the  
Energy  
Development  
Corporation (EDC) with the State of  
Ecuador for the extraction of natural  
gas in the Gulf of Guayaquil.  
562  
Cruz et al. (2025)  
The Machala thermogas production  
plant is located in the Bajo Alto sector  
of the Tendales parish, Canton El  
Guabo, Province of El Oro, as shown  
in Figure 1.  
The Machala Gas Plant has the  
effective power detailed in Table I:  
TABLE I. EFFECTIVE POWER  
CENTRAL TERMOGAS MACHALA  
Effective  
Central  
Unit  
Power MW  
64.6  
64.6  
20  
6
6
FA1  
FA2  
Fig. 1. Machala Thermal Power Plant  
Machala I  
TM1  
TM2  
TM3  
TM4  
TM5  
TM6  
20  
20  
20  
20  
Machala II  
19  
Total  
248.2  
B.  
Development  
of  
the  
optimization model  
Bender’s algorithm is employed to  
solve the proposed optimization  
problem, this algorithm facilitates the  
solution of mixed integer nonlinear  
problems [13].  
A. Characteristics of the Machala  
Thermogas Power Plant  
The Termogas Machala power  
station operates with gas obtained  
from the Gulf of Guayaquil. Until  
early 2011, the plant produced more  
than 130 MW of energy that is  
The GLPK tool, the GNU Linear  
Programming Kit, an open-source  
software intended for solving large  
linear optimization problems and  
supplied  
to  
the  
National  
Interconnected System (SNI) and  
subsequently distributed to end  
users.  
mixed  
integer  
linear  
mixed  
programming problems, is used [14].  
C. Problem master  
The Machala thermoelectric plant  
has two zones known as Machala 1  
and Machala 2, where, as shown in  
Figure 1, the 6FA natural gas  
production units are located, along  
with 6 TM2500 gas production units.  
It is stated in equation (1).  
푥,휃 1() + ꢁ  
subject to  
푝(ꢀ) ≤ 0  
563  
Revista Científica ‘‘INGENIAR”: Ingeniería, Tecnología e Investigación. Vol. 8 Núm. (15) 2025. ISSN: 2737-6249  
Evaluación del Estado en la Central Termogas Machala a través Machine Learning.  
(
푣−1)  
(ꢀ ꢄ  
≥ 푓 ꢂ푌(1) + ∑ 푘  
푣−1)  
)
information  
acquired  
by  
the  
(
2
푘=!  
(1)  
subproblem is transmitted to the  
main Benders problem to get a better  
interpretation of the original function,  
as illustrated in Figure 2 [17].  
≥ 0  
Where:  
: continuous and positive  
variable.  
Fig. 2. Bender Decomposition information  
v: iteration index of the algorithm.  
exchange coupling process  
(
푣−1)  
: constant value taken by  
the variable x in the interaction v-  
1.  
(
푣−1)  
:
푘  
cost  
sensitivities  
associated with the constraints  
that set the value of the  
complication variables.  
(1): constant value taken by  
the variable when solving the  
Benders subproblem at iteration  
v-1 [15].  
D. End of iterations  
The iterative process ends when the  
lower and upper dimensions meet at  
a point or are close to the limits. In  
each iteration, the initial problem  
dimensions are updated with the  
resolution of the main problem and  
When solving the main problem, the  
value of the complication variables  
( is obtained, as well as the value  
of the cost close to the subproblem  
푣)  
Benders'  
subproblem.  
The  
(  
The solution of the main  
problem incorporates the Bender  
Cuts procedure, which are  
constraints that iteratively  
).  
procedure in the algorithm depicted  
in the flow chart in Figure 3 [18].  
reconstruct the initial problem  
function [16].  
The solution of the main problem and  
the Benders subproblem demand a  
coupling process, also known as  
information  
exchange.  
The  
564  
Cruz et al. (2025)  
Fig. 3. Benders decomposition flowchart  
with the shutdown of the g-th  
thermo-unit (1= is shutdown, 0=  
is not shutdown).  
F. Restrictions  
The constraints are linked to a power  
balance linked to the minimum and  
maximum power limit of the  
thermoelectric  
generators.  
In  
addition, constraints are added by  
generator startup and shutdown  
costs, as discussed in equations 3  
and 4 [20].  
E. Function Objective  
ꢈíꢅ  
ꢈá푥  
≤ 퐸 ≤ 퐸  
(3)  
The objective function (J) is  
represented in equation 2 [19].  
Costs  
 × 푌 ≥ 퐶 ꢂ푌 ꢄ 푌1ꢃ  
(4)  
푑  
J  ∑  × 푃 + 퐶 × 푌 + 퐶 ×  
푡=1  
(푊 ꢄ 푊1)  
(2)  
_ × 푊 ≥ 퐶  
표ꢉꢉ_푔  
Where:  
Where:  
U: binary coupling variable.  
_: start-up cost of generating  
 : total production costs.  
units.  
 : power generated by the g- th  
thermal unit at time t.  
_ꢊ  
:
cost of stopping the  
 : fixed cost of starting the g- th  
generating unit.  
thermal unit.  
: binary variable associated with  
 : binary variable associated  
the coupling of the g-th thermal unit  
with the coupling of the g-th  
thermal unit (1= starts, 0= does  
(1= starts, 0= does not start) [21].  
not start).  
 : binary variable associated with  
 : fixed cost of stopping the g-  
the shutdown of the g-th thermal unit  
th thermo-unit.  
(1= is shutdown, 0= is not shutdown).  
 : binary variable associated  
565  
Revista Científica ‘‘INGENIAR”: Ingeniería, Tecnología e Investigación. Vol. 8 Núm. (15) 2025. ISSN: 2737-6249  
Evaluación del Estado en la Central Termogas Machala a través Machine Learning.  
In general, with respect to the  
coupling logic constraints for each  
thermal generator, it must be  
considered that:  
c) If the thermal unit is decoupled in  
period (t-1) and coupled in period  
(t) then the unit was started in (t).  
d) If the thermal unit is decoupled in  
period (t-1) and also decoupled  
in period (t) then no start-up has  
been performed [22].  
a) If the thermal unit is coupled in  
period (t-1) and also coupled in  
period (t), the unit was already  
operating in (t-1).  
For the programming the data  
expressed in tables 2 to 5 are used.  
b) If the thermal unit is coupled in  
period (t-1) and uncoupled in  
period (t), the unit stopped in (t).  
TABLE II. DEMAND REQUIRED PERIOD 2015-2022  
YEAR  
DEMAND [kW]  
2
2
2
2
2
2
2
2
015  
016  
017  
018  
019  
020  
021  
022  
800000  
560000  
780000  
890000  
450000  
560000  
630000  
660000  
TABLE III. FUEL CONSUMPTION PER KWH  
YEAR/TEAM  
2015  
2016  
2017  
2018  
2019  
2020  
2021  
2022  
6
6
FA1  
FA2  
4894.55 4889.3 5362.7 5776.85 4161.13 4193.44 4097.86 2310.39  
1343.29 4692.4 4964.54 4976.93 3929.96 1490.87 1569.73 1725.51  
TM1  
TM2  
TM3  
TM4  
TM5  
TM6  
1667.91 1475.6 1274.79 621.01 617.99 1064.75  
1356.64 1639.63 1145.69 589.72 337.86 553.61 277.54 357.43  
1613.96 892.42 884.73 976.86 400.1 571.88 141.83 1065.48  
17.6  
0
1363.04 1538.02 1266.58 844.65 415.38 450.55 725.99 800.39  
1053.41 940.94 987.83 263.06 406.54 802.06 1232.92 744.46  
0
536.63 260.63  
38.5  
45.59  
214.01  
9.93  
69.15  
566  
Cruz et al. (2025)  
TABLE IV. FUEL COST (CTVS/KWH)  
YEAR/TEAM  
2015  
2016  
2017  
2018  
2019  
2020  
2021  
2022  
6
6
FA1  
FA2  
0.0355  
0.0355  
0.0354  
0.0353  
0.0355  
0.0354  
0.0354  
0.0000  
0.0356 0.0353 0.0354 0.0354 0.0354 0.0357 0.0359  
0.0356 0.0354 0.0355 0.0354 0.0354 0.0358 0.0000  
0.0354 0.0353 0.0354 0.0355 0.0354 0.0358 0.0360  
0.0351 0.0352 0.0355 0.0355 0.0354 0.0358 0.0360  
0.0354 0.0354 0.0356 0.0355 0.0354 0.0358 0.0360  
0.0352 0.0352 0.0354 0.0355 0.0354 0.0358 0.0360  
0.0354 0.0355 0.0355 0.0355 0.0354 0.0358 0.0360  
0.0357 0.0360 0.0358 0.0357 0.0357 0.0358 0.0364  
TM1  
TM2  
TM3  
TM4  
TM5  
TM6  
TABLE V. NET ENERGY [KWH]  
YEAR/TEA  
M
2
016  
2017  
2018  
2019  
2020  
2021  
2022  
4
4
1
1
1
1
1
9
27093.4 440357.4 488657.1 518791.5 373367.2 371937.4 353363.7  
6
6
FA1  
FA2  
2
8
86  
16881.7 413944.2 437756.8 423601.9 325645.2 127765.2  
36 28 71 66 49  
8
65  
67  
67  
59  
0
9
6
24360.9 137677.2 117294.7 55594.87 55099.17 94424.80 1527.739  
TM1  
TM2  
TM3  
TM4  
TM5  
TM6  
2
9
76  
72  
01  
41  
16  
27  
58781.9 154873.0 111942.1 54688.33 32153.88 48659.95  
24353  
2
5
18  
26438.3 81491.33 79474.25 84667.30  
36 63  
23  
7
18  
89  
50720.67 13038.41  
37 84  
35401.02  
6
4
2
53224.1 143980.6 118878.2 75467.96 37558.70 40089.36 60928.74  
59 66 24 92 57  
26964.9 86230.25 94333.77 22936.11 37145.68 67843.25 100771.3  
0
1
5
8
4
78  
6792.55 48149.96 22075.10 2993.169  
65 85 98  
23  
18  
09  
18  
18768.23 6077.834  
82 74  
5
5.725097  
9
5
3. Resultados y discusión  
yielded the results described in Table  
VI.  
Mixed integer linear programming,  
performed in Python-Pyomo with the  
equations described in Section 2,  
567  
Revista Científica ‘‘INGENIAR”: Ingeniería, Tecnología e Investigación. Vol. 8 Núm. (15) 2025. ISSN: 2737-6249  
Evaluación del Estado en la Central Termogas Machala a través Machine Learning.  
TABLE VI. NELECTRIC POWER FROM EACH THERMAL GENERATOR AT TERMOGAS MACHALA  
THERMAL POWER STATION  
ENERGÍA ÓPTIMA [kWh]  
AÑO/EQUI  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
PO  
4
88657. 466398. 345299. 371937. 353363.  
6
FA1  
FA2  
0
0
0
1
8
03  
423601.  
97  
42  
0
47  
0
76  
128321.  
46  
3
92957.  
6
0
0
0
1
9
1
1
8
1
1
13940.  
133805.  
17  
TM1  
TM2  
TM3  
TM4  
TM5  
TM6  
0
0
0
0
0
0
0
0
0
0
88681.9  
0
0
0
2
2
41854. 158781. 154873.  
32153.8 48659.9  
3
2
92  
02  
8
6
2611.3  
1
79996.9 78130.7  
35401.0 50720.6  
0
4
8
2
7
14269. 153224. 143980. 118878.  
47543.4  
2
0
0
4
6
1
66  
27  
94333.7  
7
16394.  
37145.6  
8
100771.  
35  
0
0
0
0
3
9
9
5036.7 47344.2  
30930.3  
0
0
0
9
1
depending on the demand required,  
the generators will be coupled, as  
shown in the graph in Figure 4:  
In order to optimally satisfy the power  
demand of the plant, not all  
generators  
will  
operate  
simultaneously.  
Therefore,  
Fig. 4. Optimal energy Machala Thermogas Power Plant  
568  
Cruz et al. (2025)  
With a total electrical generation of  
50 MWh, generators 6FA1, TM2,  
-
Period 1:  
4
With a total electrical generation of  
TM3 and TM5 are coupled with a  
demand of 125 MW.  
600 MWh, generators TM1, TM2,  
TM3, TM4, TM5 and TM6 are  
coupled, with a demand of 119 MW.  
-
Period 7:  
With a total electrical generation of  
60 MWh, generators 6FA1, TM1,  
-
Period 2:  
5
With a total electrical generation of  
00 MWh, generators 6FA2, TM2,  
TM2 and TM3 are coupled, with a  
demand of 125 MW.  
8
TM4 and TM6 are coupled with a  
demand of 124 MW.  
-
Period 8:  
With a total electrical generation of  
30 MWh, generators 6FA1, 6FA2,  
-
Period 3:  
6
With a total electrical generation of  
60 MWh, generators TM1, TM2,  
TM4 and TM5 are coupled with a  
demand of 170 MW.  
5
TM3, TM4 and TM6 are coupled, with  
a demand of 99 MW.  
A.  
Verification  
The results are verified using the  
GAMS payment software. Figure 5  
shows the information of both the  
problem and the SOLVE; 129  
-
Period 4:  
With a total electrical generation of  
80 MWh, generators 6FA1, TM3,  
7
TM4 and TM5 are coupled with a  
demand of 125 MW.  
variables  
are  
examined,  
137  
constants are considered and there  
is an objective function.  
-
Period 5:  
With a total electrical generation of  
890 MWh, generators 6FA1 and  
6FA2 are coupled, with a demand of  
130 MW.  
-
Period 6:  
569  
Revista Científica ‘‘INGENIAR”: Ingeniería, Tecnología e Investigación. Vol. 8 Núm. (15) 2025. ISSN: 2737-6249  
Evaluación del Estado en la Central Termogas Machala a través Machine Learning.  
Fig. 5. Information on the problem posed.  
4. Conclusiones  
Currently, the Termogas Machala  
power plant generates 630 MWh of  
electricity through the operation of  
thermal generators 6FA1, 6FA2,  
TM4 and TM5. In 2022, the TM6  
generator is not in operation and,  
according to the research carried out,  
it will be put into operation with the  
expansion project by 2024.  
The image in Figure 6 shows the  
results obtained from the  
The optimization was carried out  
based on fuel costs and the energy  
produced resulted in an ideal annual  
average of 242.25 MWh, which  
establishes an appropriate operation  
of the Thermogas Power Plant, with  
combined cycle. It is important to  
note that the average fuel cost is  
optimization process, the results  
when compared with Table VI are  
exactly the same.  
Fig. 6. Results obtained  
0.036 ctvs/kWh.  
According to the results obtained, the  
maintenance and tests to be carried  
out will depend on the coupling or not  
of certain thermal generators  
according to the required demand.  
For example, in period 6 the  
generators 6FA1,TM2, TM3 and TM5  
are coupled, while in the same period  
they must be tested and the  
corresponding maintenance and  
tests must be carried out.  
By implementing an algorithm using  
the Python programming language  
570  
Cruz et al. (2025)  
and the Pyomo library, it was  
possible to establish the coupling of  
heat generators according to the  
necessary economic dispatch and  
fuel cost.  
Systems, vol. 19, pp. 360–  
3
1
.
73, doi:  
0.37394/232016.2024.19.31  
2024,  
[
3]  
E. E. Ogar, S. Chaitusaney,  
and W. Benjapolakul, “Solar  
Power  
Plant  
Capacity  
The use of Bender's decomposition  
method is one of the many  
alternatives for solving mixed linear  
Monitoring Using Random  
Forest Machine Learning  
Algorithm,” 2024 IEEE/IAS  
Industrial and Commercial  
Power System Asia (I&CPS  
Asia), pp. 6772, 2024,  
integer  
optimization  
problems,  
although it is more frequently used in  
education to explain the procedure  
necessary to solve such problems.  
Other algorithms can be used to  
solve these problems, although the  
one used in this study is less  
complicated and more effective in  
solving the problem.  
[
Online].  
Available:  
https://api.semanticscholar.or  
g/CorpusID:274468093  
[4]  
T. Haigler, “Power Plant  
Condition  
through  
Assessment  
Engineering,  
Materials Science, and NDT  
.0 Technology,” e-Journal of  
Nondestructive Testing, 2022,  
Online]. Available:  
4
[
Bibliografía  
https://api.semanticscholar.or  
g/CorpusID:254775433  
[
1]  
P. Manke, S. Rungta, and S.  
Bharti, “Forecast Load  
[5]  
G. S. Patil, U. S. Patil, and P.  
Demand in Thermal Power  
Plant with Machine Learning  
Algorithm: A Review,” Electric  
P. Shinde, “Enhancing Power  
Transformer  
Reliability  
through Machine Learning-  
Based Fault Prediction Using  
Dissolved Gas Analysis,”  
Power  
Components  
and  
Systems, 2024, [Online].  
Available:  
2024  
Third  
International  
https://api.semanticscholar.or  
g/CorpusID:266916716  
Conference on Power, Control  
and Computing Technologies  
(
ICPC2T), pp. 7276, 2024,  
[
2]  
D. Pila, C. Quinatoa, L.  
Camacho, and J. Vaca,  
[
Online]. Available:  
https://api.semanticscholar.or  
g/CorpusID:268701307  
“Transient Stability Analysis of  
the Ecuadorian Electrical  
System: Case of the Southern  
[6]  
J. I. Aizpurua, S. Mcarthur, B.  
G. Stewart, B. Lambert, J. G.  
Cross, and V. M. Catterson,  
Segment,”  
WSEAS  
Transactions  
on  
Power  
571  
Revista Científica ‘‘INGENIAR”: Ingeniería, Tecnología e Investigación. Vol. 8 Núm. (15) 2025. ISSN: 2737-6249  
Evaluación del Estado en la Central Termogas Machala a través Machine Learning.  
“Adaptive Power Transformer  
Generation Forecasting,” E3S  
Lifetime Predictions Through  
Web of Conferences, 2021,  
Machine  
Uncertainty  
Nuclear Power Plants,” IEEE  
Transactions on Industrial  
Electronics, vol. 66, pp. 4726–  
Learning  
Modeling  
and  
in  
[Online].  
https://api.semanticscholar.or  
g/CorpusID:241445677  
Available:  
[
11] C. Quinatoa, D. Albán, X.  
Proaño, and L. Camacho,  
4737,  
2019,  
[Online].  
Development of an Algorithm  
for Protection against  
Atmospheric Discharges in  
Buildings,” Revista  
Available:  
https://api.semanticscholar.or  
g/CorpusID:59600342  
[
7]  
C. Pacheco et al., “Enhancing  
Predictive Maintenance of  
Power Transformers Through  
Politecnica, vol. 55, no. 1, pp.  
5160, Feb. 2025, doi:  
10.33333/rp.vol55n1.05.  
Machine  
Approaches,” Learning and  
Nonlinear Models, 2024,  
Online]. Available:  
https://api.semanticscholar.or  
g/CorpusID:273291560  
Learning  
[
12] R. Loganantharaj, G. Palm,  
and M. Ali, “Intelligent problem  
solvingꢀ: methodologies and  
[
approachesꢀ:  
13th  
International Conference on  
Industrial and Engineering  
[
8]  
M. S. Sachit, H. Z. M. Shafri,  
A. F. Abdullah, A. S. M. Rafie,  
and M. B. A. Gibril, “Global  
Spatial Suitability Mapping of  
Wind and Solar Systems  
Using an Explainable AI-  
Based Approach,” ISPRS Int.  
J. Geo Inf., vol. 11, p. 422,  
Applications  
Intelligence  
Systems, IEA/AIE 2000, New  
Orleans, Louisiana, USA,  
of  
and  
Artificial  
Expert  
June  
19-22,  
2000ꢀ:  
proceedings,” 2000. [Online].  
Available:  
https://api.semanticscholar.or  
g/CorpusID:61041622  
2022, [Online]. Available:  
https://api.semanticscholar.or  
g/CorpusID:251145904  
[
13] S. Boubaker, S. Kamel, N.  
Ghazouani, and A. Mellit,  
“Assessment of Machine and  
Deep Learning Approaches  
[
[
9]  
“Predictive  
Maintenance  
Prediction Of  
Beyond  
Failures,” 2022. [Online].  
Available:  
https://api.semanticscholar.or  
g/CorpusID:268113948  
for  
Photovoltaic Systems Using  
Infrared Thermography,”  
Remote. Sens., vol. 15, p.  
686, 2023, [Online].  
Available:  
Fault  
Diagnosis  
in  
1
10] D. Erlapally, Dr. K. Anuradha,  
Dr. G. Karuna, V. Srilakshmi,  
and K. Adilakshmi, “Survey  
Analysis of Solar Power  
https://api.semanticscholar.or  
g/CorpusID:257674053  
572  
Cruz et al. (2025)  
[
14] Y. Pan et al., “Broken Power  
Strand Detection with Aerial  
Images: A Machine Learning  
based Approach,” 2020 IEEE  
International Smart Cities  
Conference (ISC2), pp. 17,  
Module with Maximum Power  
Output Predictingalgorithm  
Based on Artificial Intelligence  
Technology,” 2024 IEEE 52nd  
Photovoltaic  
Specialist  
Conference (PVSC), p. 1536,  
2024, [Online]. Available:  
https://api.semanticscholar.or  
g/CorpusID:274060797  
2020, [Online]. Available:  
https://api.semanticscholar.or  
g/CorpusID:226293664  
[
15] H. Moreno, C. Rueda-Ayala,  
V. Rueda-Ayala, Á. Ribeiro, C.  
Ranz, and D. Andújar,  
[19] S. Roy, S. Tufail, M. Tariq, and  
A. I. Sarwat, “Photovoltaic  
Inverter Failure Mechanism  
Machine Learning-Powered  
Segmentation of Forage  
Crops in RGB Imagery  
Through Artificial Sward  
Images,” Agronomy, 2025,  
Online]. Available:  
Estimation  
Unsupervised  
Learning  
Assessment,” IEEE Trans  
Reliab, vol. 73, pp. 1418–  
1432,  
Using  
Machine  
Reliability  
and  
[
2024,  
[Online].  
https://api.semanticscholar.or  
g/CorpusID:276029075  
Available:  
https://api.semanticscholar.or  
g/CorpusID:268454893  
[
16] Dr. P. Deeskow, T. Kamiński,  
and U. Steinmetz, “ANOMALY  
DETECTION IN POWER  
PLANT DATA OF A LARGE  
[20] J. R. Vaca González, C.  
Quinatoa, J. Ortiz, and L.  
Camacho, “Evaluación de  
modelos de optimización  
convexos para minimizar  
pérdidas en el sistema de  
COAL  
PLANT  
FROM  
FIRED POWER  
EXPERIENCE  
THE RECENT  
PROJECTS,” 2018. [Online].  
Available:  
https://api.semanticscholar.or  
g/CorpusID:89607781  
distribución,”  
Conectividad, vol. 5, no. 3, pp.  
6278, Jul. 2024, doi:  
10.37431/conectividad.v5i3.1  
2.  
Revista  
5
[
17] H. J. Mackenzie., “Short-Term  
Forecasting of Wind Power  
Plant Generation for System  
Stability and Provision of  
Ancillary Services,” 2017.  
[21] A. and P. V. and C. A. and C.  
L. and O. J. Quinatoa Carlos  
and Chasi, “Optimization  
Model  
for  
Coordinated  
[
Online].  
Available:  
Multistage Planning of the  
Generation-Transmission  
https://api.semanticscholar.or  
g/CorpusID:37876434  
System  
with  
Demand  
Forecasting Using Neural  
Networks,” in Proceedings of  
[
18] Y. H. Kim, J. Kim, and J. Jeon,  
“How to Predict the PV  
573  
Revista Científica ‘‘INGENIAR”: Ingeniería, Tecnología e Investigación. Vol. 8 Núm. (15) 2025. ISSN: 2737-6249  
Evaluación del Estado en la Central Termogas Machala a través Machine Learning.  
the  
4th  
International  
Conference on Electronic  
Engineering and Renewable  
Energy SystemsVolume 1,  
A. and M. A. and R. A. and C.  
M. Hajji Bekkay and Gagliano,  
Ed., Singapore: Springer  
Nature Singapore, 2025, pp.  
573581.  
[
22] A. G. Ahungwa, C. Ioana, V.  
Bouillet, B. Michel, A.  
Bombenger, and P. Véras,  
Machine Learning-Assisted  
Operation Monitoring  
Analytics on a Hydro Power  
Plant,” 2024 6th Global  
Power,  
Communication Conference  
GPECOM), pp. 461471,  
024, [Online]. Available:  
Energy  
and  
(
2
https://api.semanticscholar.or  
g/CorpusID:270974092  
574