Influencia del procesamiento tradicional de embutidos en la formación de hidrocarburos aromáticos

Autores/as

  • Intriago-Alcívar Lorena Carrera de Ingeniería Química, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, UTM. Portoviejo, Ecuador.
  • Suárez-Reyes Ámbar Carrera de Ingeniería Química, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, UTM. Portoviejo, Ecuador.
  • Zambrano-Garzón Ignacio Instituto de Posgrado, Universidad Técnica de Manabí, UTM. Portoviejo-Ecuador.

DOI:

https://doi.org/10.46296/ig.v5i10.0061

Palabras clave:

Benzo[a]pireno, hidrocarburos aromáticos policíclicos, cocción, ahumado, fritura

Resumen

En el presente estudio se evaluó la influencia de los factores de procesamiento que afectan la concentración de benzo[a]pireno (BaP) en la longaniza, un embutido tradicional del Ecuador. Las muestras fueron sometidas a diferentes métodos de cocción (hervido, frito, ahumado) y posteriormente analizadas mediante HPLC-DAD. Se encontraron concentraciones de BaP en todas las muestras; el método de ahumado produjo una mayor concentración de BaP de 88.30 μg/kg, seguido del método frito con 48.25 μg/kg. El método de hervido presentó una disminución de las concentraciones de BaP obteniéndose al finalizar el proceso un valor de 23.04 μg/kg, tomando como valor inicial la concentración de BaP en la muestra cruda de 26.25 μg/kg. Se evaluaron parámetros fisicoquímicos durante los diferentes procesos de cocción, el pH mostró una correlación con el aumento de BaP en los procesos de fritura y ahumado con un r2 igual a 0.87 y 0.94, respectivamente. Por otro lado, el contenido de grasa durante el hervido disminuye simultáneamente junto con la concentración de BaP, encontrándose una correlación negativa, en el método de fritura el contenido de BaP se incrementa conforme al contenido de grasa, por el contrario, en el caso del método de ahumado, la concentración de BaP se incrementa a menor contenido de grasa. Tanto el pH como el contenido de grasa influyen en la formación de hidrocarburos aromáticos policíclicos en los embutidos, sin embargo, la concentración final de BaP depende también método de cocción empleado, y de los ingredientes de la preparación del embutido.

Palabras clave: Benzo[a]pireno, hidrocarburos aromáticos policíclicos, cocción, ahumado, fritura.

Abstract

In the present study, the influence of processing factors that affect the concentration of benzo[a]pyrene (BaP) in longaniza, a traditional sausage from Ecuador, was evaluated. The samples were subjected to different cooking methods (boiled, fried, smoked) and then analyzed by HPLC-DAD. BaP concentrations were found in all samples; the smoking method produced a higher BaP concentration of 88.30 μg/kg, followed by the fried method with 48.25 μg/kg. The boiling method presented a decrease in BaP concentrations, obtaining a value of 23.04 μg/kg at the end of the process, taking as the initial value the BaP concentration of the raw sample of 26.25 μg/kg. Physicochemical parameters were evaluated during the different cooking processes, the pH showed a correlation with the increase of BaP in the frying and smoking processes with an r2 equal to 0.87 and 0.94, respectively. Contrarily, the fat content during boiling decreases simultaneously along with the BaP concentration finding a negative correlation, in the frying method the BaP content is increased according to the fat content, contrary in the case of the smoking method, the baP concentration is increased to lower fat content. Both pH and fat content are factors that influence the formation of polycyclic aromatic hydrocarbons in sausages, however, the final concentration of BaP also bank on the cooking method used, and the sausage’s ingredients. 

Keywords: Benzo[a]pyrene, polycyclic aromatic hydrocarbons, cooking, smoking, frying.

Información del manuscrito:
Fecha de recepción:
02 de septiembre de 2021.
Fecha de aceptación: 16 de octubre de 2021.
Fecha de publicación: 11 de julio de 2022.

Citas

Andelman, J. B., & Suess, M. J. (1970). Polynuclear aromatic hydrocarbons in the water environment. Bulletin of the World Health Organization, 43(3), 479-508.

AOAC. (1975). Official methods of analysis. Association of Official Agricultural Chemists, 2nd.

Aydın, Ö., & Sahan, Y. (2018). Bazı Et Türlerinde Polisiklik Aromatik Hidrokarbon Oluşumuna Farklı Pişirme Yöntemlerinin Etkisi. Akademik Gıda, 387-394. https://doi.org/10.24323/akademik-gida.505505

Bansal, V., & Kim, K.-H. (2015). Review of PAH contamination in food products and their health hazards. Environment International, 84, 26-38. https://doi.org/10.1016/j.envint.2015.06.016

Bermúdez, A. A., Romero Barragan, P., & Arrazola Paternina, G. (2016). Pérdida de humedad y absorción de aceite durante fritura de tajadas de plátano (Musa paradisiaca L.). Biotecnología en el Sector Agropecuario y Agroindustrial, 14(2), 119. https://doi.org/10.18684/BSAA(14)119-124

Bernardo, D. L., Barros, K. A., Silva, R. C., Pavão, A. C., Bernardo, D. L., Barros, K. A., Silva, R. C., & Pavão, A. C. (2016). Carcinogenicity of Polycyclic aromatic Hydrocarbons. Química Nova, 39(7), 789-794. https://doi.org/10.5935/0100-4042.20160093

Bowker, B., & Zhuang, H. (2015). Relationship between water-holding capacity and protein denaturation in broiler breast meat. Poultry Science, 94(7), 1657-1664. https://doi.org/10.3382/ps/pev120

Brannan, R. G., Mah, E., Schott, M., Yuan, S., Casher, K. L., Myers, A., & Herrick, C. (2014). Influence of ingredients that reduce oil absorption during immersion frying of battered and breaded foods. European Journal of Lipid Science and Technology, 116(3), 240-254. https://doi.org/10.1002/ejlt.201200308

Britt, P. F., Buchanan, A. C., Owens, C. V., & Todd Skeen, J. (2004). Does glucose enhance the formation of nitrogen containing polycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis of proline? Fuel, 83(11), 1417-1432. https://doi.org/10.1016/j.fuel.2004.02.009

Cao, H., Wang, C., Liu, H., Jia, W., & Sun, H. (2020). Enzyme activities during Benzo[a]pyrene degradation by the fungus Lasiodiplodia theobromae isolated from a polluted soil. Scientific Reports, 10(1), 865. https://doi.org/10.1038/s41598-020-57692-6

Caruso, M. S. F., & Alaburda, J. (2008). Hidrocarbonetos policíclicos aromáticos - benzo(a)pireno: Uma revisão. Revista Do Instituto Adolfo Lutz, 67(1), 1-27.

Chen, B. H., & Lin, Y. S. (1997). Formation of Polycyclic Aromatic Hydrocarbons during Processing of Duck Meat. Journal of Agricultural and Food Chemistry, 45(4), 1394-1403. https://doi.org/10.1021/jf9606363

Commission Regulation. (2011). (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs Text with EEA relevance, Pub. L. No. 32011R0835, 215 OJ L. http://data.europa.eu/eli/reg/2011/835/oj/eng

Dana, D., & Saguy, I. S. (2006). Mechanism of oil uptake during deep-fat frying and the surfactant effect-theory and myth. Advances in Colloid and Interface Science, 128-130, 267-272. https://doi.org/10.1016/j.cis.2006.11.013

Darwish, W. S., Chiba, H., El-Ghareeb, W. R., Elhelaly, A. E., & Hui, S.-P. (2019). Determination of polycyclic aromatic hydrocarbon content in heat-treated meat retailed in Egypt: Health risk assessment, benzo[a]pyrene induced mutagenicity and oxidative stress in human colon (CaCo-2) cells and protection using rosmarinic and ascorbic acids. Food Chemistry, 290, 114-124. https://doi.org/10.1016/j.foodchem.2019.03.127

Djinovic, J., Popovic, A., & Jira, W. (2008). Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. Meat Science, 80(2), 449-456. https://doi.org/10.1016/j.meatsci.2008.01.008

Duedahl-Olesen, L., Aaslyng, M., Meinert, L., Christensen, T., Jensen, A. H., & Binderup, M.-L. (2015). Polycyclic aromatic hydrocarbons (PAH) in Danish barbecued meat. Food Control, 57, 169-176. https://doi.org/10.1016/j.foodcont.2015.04.012

Dyremark, A., Westerholm, R., Övervik, E., & Gustavsson, J.-Å. (1995). Polycyclic aromatic hydrocarbon (PAH) emissions from charcoal grilling. Atmospheric Environment, 29(13), 1553-1558. https://doi.org/10.1016/1352-2310(94)00357-Q

Farhadian, A., Jinap, S., Abas, F., & Sakar, Z. (2010). Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control, 21, 606-610. https://doi.org/10.1016/j.foodcont.2009.09.002

Farhadian, A., Jinap, S., Faridah, A., & Zaidul, I. S. M. (2012). Effects of marinating on the formation of polycyclic aromatic hydrocarbons (benzo[a]pyrene, benzo[b]fluoranthene and fluoranthene) in grilled beef meat. Food Control, 28(2), 420-425. https://doi.org/10.1016/j.foodcont.2012.04.034

Franco, Y. N., & Ramírez, C. M. (2013). El benzo(a)pireno en los alimentos y su relación con el cáncer. Perspectivas en Nutrición Humana, 15(1), 99-112.

Gachanja, A. N., & Maritim, P. K. (2019). Polycyclic Aromatic Hydrocarbons Determination. En P. Worsfold, C. Poole, A. Townshend, & M. Miró (Eds.), Encyclopedia of Analytical Science (Third Edition) (pp. 328-340). Academic Press. https://doi.org/10.1016/B978-0-12-409547-2.14107-1

Gharby, S., Harhar, H., Farssi, M., Taleb, A. A., Guillaume, D., & Laknifli, A. (2018). Influence of roasting olive fruit on the chemical composition and polycyclic aromatic hydrocarbon content of olive oil. OCL, 25(3), A303. https://doi.org/10.1051/ocl/2018013

Grau, R. (1978). Carne e prodotti carnei / Reinhold Grau ; edizione italiana a cura di Pompeo Capella e Franco Minoccheri. Edagricole.

Hamidi, E. N., Hajeb, P., Selamat, J., & Razis, A. F. A. (2016). Polycyclic Aromatic Hydrocarbons (PAHs) and their Bioaccessibility in Meat: A Tool for Assessing Human Cancer Risk. Asian Pacific Journal of Cancer Prevention, 17(1), 15-23. https://doi.org/10.7314/APJCP.2016.17.1.15

Hernando, P. (2013). Contaminación producida durante el procesado, preparación, transporte y limpieza de los alimentos. Aldaba: revista del Centro Asociado a la UNED de Melilla, 36, 65-78.

Hitzel, A., Pöhlmann, M., Schwägele, F., Speer, K., & Jira, W. (2013). Polycyclic aromatic hydrocarbons (PAH) and phenolic substances in meat products smoked with different types of wood and smoking spices. Food Chemistry, 139(1-4), 955-962. https://doi.org/10.1016/j.foodchem.2013.02.011

Hokkanen, M., Luhtasela, U., Kostamo, P., Ritvanen, T., Peltonen, K., & Jestoi, M. (2018). Critical Effects of Smoking Parameters on the Levels of Polycyclic Aromatic Hydrocarbons in Traditionally Smoked Fish and Meat Products in Finland. Journal of Chemistry, 2018, e2160958. https://doi.org/10.1155/2018/2160958

ICAITI. (1977). Carne y productos cárnicos. Medición del pH. Norma Centro Americana ICAITI 34125 h 8.

Ingenbleek, L., Veyrand, B., Adegboye, A., Hossou, S. E., Koné, A. Z., Oyedele, A. D., Kisito, C. S. K. J., Dembélé, Y. K., Eyangoh, S., Verger, P., Leblanc, J.-C., Durand, S., Venisseau, A., Marchand, P., & Le Bizec, B. (2019). Polycyclic aromatic hydrocarbons in foods from the first regional total diet study in Sub-Saharan Africa: Contamination profile and occurrence data. Food Control, 103, 133-144. https://doi.org/10.1016/j.foodcont.2019.04.006

Kiralan, S. S., Toptancı, İ., & Tekin, A. (2019). Further Evidence on the Removal of Polycyclic Aromatic Hydrocarbons (PAHs) During Refining of Olive Pomace Oil. European Journal of Lipid Science and Technology, 121(4), 1800381. https://doi.org/10.1002/ejlt.201800381

Kołczak, T., Krzysztoforski, K., & Palka, K. (2007). The effect of post-mortem ageing and heating on water retention in bovine muscles. Meat Science, 75(4), 655-660. https://doi.org/10.1016/j.meatsci.2006.09.014

Ledesma, E., Rendueles, M., & Díaz, M. (2015). Spanish smoked meat products: Benzo(a)pyrene (BaP) contamination and moisture. Journal of Food Composition and Analysis, 37, 87-94. https://doi.org/10.1016/j.jfca.2014.09.004

Ledesma, E., Rendueles, M., & Díaz, M. (2016). Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control, 60, 64-87. https://doi.org/10.1016/j.foodcont.2015.07.016

Lee, J.-G., Kim, S.-Y., Moon, J.-S., Kim, S.-H., Kang, D.-H., & Yoon, H.-J. (2016). Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chemistry, 199, 632-638. https://doi.org/10.1016/j.foodchem.2015.12.017

Lichtfouse, É., Budzinski, H., Garrigues, P., & Eglinton, T. I. (1997). Ancient polycyclic aromatic hydrocarbons in modern soils: 13C, 14C and biomarker evidence. Organic Geochemistry, 26(5), 353-359. https://doi.org/10.1016/S0146-6380(97)00009-0

Lima, R. F. de, Dionello, R. G., Peralba, M. do C. R., Barrionuevo, S., Radunz, L. L., & Reichert Júnior, F. W. (2017). PAHs in corn grains submitted to drying with firewood. Food Chemistry, 215, 165-170.

Luzardo, O. P., Rodríguez-Hernández, Á., Quesada-Tacoronte, Y., Ruiz-Suárez, N., Almeida-González, M., Henríquez-Hernández, L. A., Zumbado, M., & Boada, L. D. (2013). Influence of the method of production of eggs on the daily intake of polycyclic aromatic hydrocarbons and organochlorine contaminants: An independent study in the Canary Islands (Spain). Food and Chemical Toxicology, 60, 455-462. https://doi.org/10.1016/j.fct.2013.08.003

Luzardo, O. P., Zumbado, M., & Boada, L. D. (2013). Concentrations of polycyclic aromatic hydrocarbons and organohalogenated contaminants in selected foodstuffs from Spanish market basket: Estimated intake by the population from Spain. Journal of Food, Agriculture and Environment, 11, 437-443. https://accedacris.ulpgc.es/jspui/handle/10553/48414

Martins, S. I. F. S., Jongen, W. M. F., & van Boekel, M. A. J. S. (2000). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, 11(9), 364-373. https://doi.org/10.1016/S0924-2244(01)00022-X

Martorell, I., Perelló, G., Martí-Cid, R., Castell, V., Llobet, J. M., & Domingo, J. L. (2010). Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend. Environment International, 36(5), 424-432. https://doi.org/10.1016/j.envint.2010.03.003

Mastandrea, C., Chichizola, C., Ludueña, B., Sánchez, H., Álvarez, H., & Gutiérrez, A. (2005). Hidrocarburos aromáticos policíclicos. Riesgos para la salud y marcadores biológicos. Acta Bioquímica Clínica Latinoamericana, 39(1), 27-36.

McGrath, T., Sharma, R., & Hajaligol, M. (2001). An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials. Fuel, 80(12), 1787-1797. https://doi.org/10.1016/S0016-2361(01)00062-X

Menichini, E. (1992). Urban air pollution by polycyclic aromatic hydrocarbons: Levels and sources of variability. Science of The Total Environment, 116(1), 109-135. https://doi.org/10.1016/0048-9697(92)90368-3

Montes O, N., Millar M, I., Provoste L, R., Martínez M, N., Fernández Z, D., Morales I, G., & Valenzuela B, R. (2016). Absorción de aceite en alimentos fritos. Revista chilena de nutrición, 43(1), 87-91. https://doi.org/10.4067/S0717-75182016000100013

Nworah, F. N., Nkwocha, C. C., Nwachukwu, J. N., & Ezeako, E. C. (2019). Comparative analysis of the Polycyclic Aromatic Hydrocarbon (PAH) content and proximate composition of unripe Musa paradisiaca (plantain) fruit exposed to varying methods of roasting. Journal of Environmental Health Science and Engineering, 17(1), 105-113. https://doi.org/10.1007/s40201-018-00331-0

OMS. (2015). OMS | Carcinogenicidad del consumo de carne roja y de la carne procesada. WHO; World Health Organization. http://www.who.int/features/qa/cancer-red-meat/es/

Oz, E. (2021). The impact of fat content and charcoal types on quality and the development of carcinogenic polycyclic aromatic hydrocarbons and heterocyclic aromatic amines formation of barbecued fish. International Journal of Food Science & Technology, 56(2), 954-964. https://doi.org/10.1111/ijfs.14748

Pang, B., Yu, X., Bowker, B., Zhang, J., Yang, Y., & Zhuang, H. (2021). Effect of meat temperature on moisture loss, water properties, and protein profiles of broiler pectoralis major with the woody breast condition. Poultry Science, 100(2), 1283-1290. https://doi.org/10.1016/j.psj.2020.10.034

Park, K.-C., Pyo, H., Kim, W., & Yoon, K. S. (2017). Effects of cooking methods and tea marinades on the formation of benzo[a]pyrene in grilled pork belly (Samgyeopsal). Meat Science, 129, 1-8. https://doi.org/10.1016/j.meatsci.2017.02.012

Paz, A. P. S. da, Nascimento, E. C. P., Marcondes, H. C., Silva, M. C. F. da, Hamoy, M., & Mello, V. J. de. (2017). Presença de hidrocarbonetos policíclicos aromáticos em produtos alimentícios e a sua relação com o método de cocção e a natureza do alimento. Brazilian Journal of Food Technology, 20. https://doi.org/10.1590/1981-6723.10216

PentaCarbon. (2019). Carbon Black – PAH and Regulations. https://pentacarbon.de/wp-content/uploads/2019/09/PentaCarbon-Carbon-Black-PAH-and-Regulations.pdf

Reinik, M., Tamme, T., Roasto, M., Juhkam, K., Tenno, T., & Kiis, A. (2007). Polycyclic aromatic hydrocarbons (PAHs) in meat products and estimated PAH intake by children and the general population in Estonia. Food Additives & Contaminants, 24(4), 429-437. https://doi.org/10.1080/02652030601182862

Rey-Salgueiro, L., García-Falcón, M. S., Martínez-Carballo, E., & Simal-Gándara, J. (2008). Effects of toasting procedures on the levels of polycyclic aromatic hydrocarbons in toasted bread. Food Chemistry, 108(2), 607-615. https://doi.org/10.1016/j.foodchem.2007.11.026

Rose, M., Holland, J., Dowding, A., Petch, S. (R. G.), White, S., Fernandes, A., & Mortimer, D. (2015). Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food and Chemical Toxicology, 78, 1-9. https://doi.org/10.1016/j.fct.2014.12.018

Roseiro, L. C., Gomes, A., & Santos, C. (2011). Influence of processing in the prevalence of polycyclic aromatic hydrocarbons in a Portuguese traditional meat product. Food and Chemical Toxicology, 49(6), 1340-1345. https://doi.org/10.1016/j.fct.2011.03.017

Ryser, H. J. (1974). Special report: Chemical carcinogenesis. CA: A Cancer Journal for Clinicians, 24(6), 351-360. https://doi.org/10.3322/canjclin.24.6.351

Sahin, S., Ulusoy, H. I., Alemdar, S., Erdogan, S., & Agaoglu, S. (2020). The Presence of Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Beef, Chicken and Fish by Considering Dietary Exposure and Risk Assessment. Food Science of Animal Resources, 40(5), 675-688. https://doi.org/10.5851/kosfa.2020.e43

Sampaio, G. R., Guizellini, G. M., da Silva, S. A., de Almeida, A. P., Pinaffi-Langley, A. C. C., Rogero, M. M., de Camargo, A. C., & Torres, E. A. F. S. (2021). Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. International Journal of Molecular Sciences, 22(11), 6010. https://doi.org/10.3390/ijms22116010

Santonicola, S., De Felice, A., Cobellis, L., Passariello, N., Peluso, A., Murru, N., Ferrante, M. C., & Mercogliano, R. (2017). Comparative study on the occurrence of polycyclic aromatic hydrocarbons in breast milk and infant formula and risk assessment. Chemosphere, 175, 383-390. https://doi.org/10.1016/j.chemosphere.2017.02.084

Savic, I., & Karan-Djurdjic, S. (1955). The effect of heating on pH changes in meat.

Sherman, P. (1961). The water binding capacity of fresh pork. III. The influence of cooking temperature on the water binding capacity of lean pork. En Food Technology (15.a ed., pp. 90-94).

Silva, B. O., Fatunsin, O., Oluseyi, T., Olayinka, K., & Alo, B. (2011). Effects of the methods of smoking on the levels of polycyclic aromatic hydrocarbons (PAHs) in some locally consumed fishes in Nigeria. African Journal of Food Science, 5.

Singh, L., Varshney, J. G., & Agarwal, T. (2016). Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chemistry, 199, 768-781. https://doi.org/10.1016/j.foodchem.2015.12.074

Škaljac, S., Jokanović, M., Tomović, V., Ivić, M., Tasić, T., Ikonić, P., Šojić, B., Džinić, N., & Petrović, L. (2018). Influence of smoking in traditional and industrial conditions on colour and content of polycyclic aromatic hydrocarbons in dry fermented sausage “Petrovská klobása”. LWT, 87, 158-162. https://doi.org/10.1016/j.lwt.2017.08.038

Slezakova, K., Pires, J. C. M., Castro, D., Alvim-Ferraz, M. C. M., Delerue-Matos, C., Morais, S., & Pereira, M. C. (2013). PAH air pollution at a Portuguese urban area: Carcinogenic risks and sources identification. Environmental Science and Pollution Research, 20(6), 3932-3945. https://doi.org/10.1007/s11356-012-1300-7

Stumpe-Vīksna, I., Bartkevičs, V., Kukāre, A., & Morozovs, A. (2008). Polycyclic aromatic hydrocarbons in meat smoked with different types of wood. Food Chemistry, 110(3), 794-797. https://doi.org/10.1016/j.foodchem.2008.03.004

Teo, H. H. (2018). The Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Toasted, Fried, and Roasted Malaysian Food by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) [Final Year Project]. Tunku Abdul Rahman University College. http://eprints.tarc.edu.my/11516/

Terzi, G., Çelik, T. H., & Nisbet, C. (2008). Determination of Benzo[a]pyrene in Turkish döner Kebab Samples Cooked with Charcoal or Gas Fire. Irish Journal of Agricultural and Food Research, 47(2), 187-193.

US EPA National Center for Environmental Assessment, I. O., & Newhouse, K. (2013). IRIS Toxicological Review of Benzo[a]pyrene (Public Comment Draft) [Reports & Assessments]. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=66193

Van der Wielen, J. C. A., Jansen, J. T. A., Martena, M. J., De Groot, H. N., & In’t Veld, P. H. (2006). Determination of the level of benzo[a]pyrene in fatty foods and food supplements. Food Additives and Contaminants, 23(7), 709-714. https://doi.org/10.1080/02652030600631869

Wang, G., Lee, A. S., Lewis, M., Kamath, B., & Archer, R. K. (1999). Accelerated solvent extraction and gas chromatography/mass spectrometry for determination of polycyclic aromatic hydrocarbons in smoked food samples. Journal of Agricultural and Food Chemistry, 47(3), 1062-1066. https://doi.org/10.1021/jf980956h

Watanabe, G., Motoyama, M., Nakajima, I., & Sasaki, K. (2018). Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin. Asian-Australasian Journal of Animal Sciences, 31(6), 914-918. https://doi.org/10.5713/ajas.17.0640

Wongmaneepratip, W., & Vangnai, K. (2017). Effects of oil types and pH on carcinogenic polycyclic aromatic hydrocarbons (PAHs) in grilled chicken. Food Control, 79, 119-125. https://doi.org/10.1016/j.foodcont.2017.03.029

Wu, S., Gong, G., Yan, K., Sun, Y., & Zhang, L. (2020). Chapter Two - Polycyclic aromatic hydrocarbons in edible oils and fatty foods: Occurrence, formation, analysis, change and control. En F. Toldrá (Ed.), Advances in Food and Nutrition Research (Vol. 93, pp. 59-112). Academic Press. https://doi.org/10.1016/bs.afnr.2020.02.001

Yuan, M. (2010). The Preparation and Analysis of Polycyclic Aromatic Hydrocarbons in Meat by GC/MS. 5.

Zachara, A., Gałkowska, D., & Juszczak, L. (2017). Contamination of smoked meat and fish products from Polish market with polycyclic aromatic hydrocarbons. Food Control, 80, 45-51. https://doi.org/10.1016/j.foodcont.2017.04.024

Zhang, Y., Chen, X., & Zhang, Y. (2021). Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to in vivo metabolic transformation. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1422-1456. https://doi.org/10.1111/1541-4337.12705

Descargas

Publicado

2022-07-11

Cómo citar

Intriago-Alcívar, L., Suárez-Reyes, Ámbar, & Zambrano-Garzón, I. (2022). Influencia del procesamiento tradicional de embutidos en la formación de hidrocarburos aromáticos . Revista Científica INGENIAR: Ingeniería, Tecnología E Investigación. ISSN: 2737-6249., 5(10), 22-46. https://doi.org/10.46296/ig.v5i10.0061