DESIGN OF CULVERT SIZING FOR THE PROTECTION OF THE STATE ROAD NETWORK E20, QUININDÉ – ESMERALDAS SECTION, ECUADOR

Authors

  • Chancay-Mora Pedro Eloy Ingeniero Civil, Posgradista del programa de la Maestría en Hidráulica, mención Gestión de Recursos Hídricos, Instituto de Posgrado, Universidad Técnica de Manabí. Portoviejo, Ecuador. https://orcid.org/0000-0002-9793-7718
  • Zambrano-Acosta Jimmy Manuel Ingeniero en Zootecnia, Magister en Investigación y Gestión de Proyectos, Magíster en Evaluación de la Calidad y Procesos de Certificación en Educación Superior, Doctor en Ciencias de la Educación. Docente Universidad Técnica de Manabí. Portoviejo, Ecuador. https://orcid.org/0000-0001-9620-1963

Keywords:

Hydraulic design, culverts, state road network, sizing, runoff, damage mitigation

Abstract

DOI: https://doi.org/10.46296/ig.v8i15.0234

This study analyzes the design of culverts for the state road network E20, Quinindé – Esmeraldas section, in Esmeraldas Province, Ecuador. The research is justified by the need to protect road infrastructure from runoff damage caused by heavy rainfall in the region. Objectives include the sizing of culverts to mitigate the impact of water flows. A hydrological analysis and generalized rational methodology were used, considering topographic and climatological data. Key findings demonstrate the feasibility of an efficient design for drainage and structural damage mitigation on the road. In conclusion, the proposed design will optimize maintenance resources and enhance infrastructure durability.

Keywords: Hydraulic design, culverts, state road network, sizing, runoff, damage mitigation.

References

Adegoke, C. W., & Sojobi, A. O. (2015). Climate Change Impact on Infrastructure in Osogbo Metropolis, South-West Nigeria. Journal of Emerging Trends in Engineering and Applied Sciences, 6(3), 156-167. Disponible en https://eprints.lmu.edu.ng/id/eprint/511

Alonso, F. (2005). Diseño hidráulico de alcantarillas. Recuperado de https://www.academia.edu/download/33602878/diseno_hidraulico__de_alcantarillas.pdf

Arnbjerg-Nielsen, K. (2012). Quantification of climate change effects on extreme precipitation used for high-resolution hydrologic design. Urban Water Journal, 9(1), 57-65. https://doi.org/10.1080/1573062X.2011.630091

Consejo de Agua, M.-I. del (2000). La modelación física en las obras hidráulicas. Recuperado de https://iwaponline.com/IA/article-abstract/7/1/55/68297

Denault, C. (2001). Assessment of the likely impact of climate change on infrastructure and natural ecosystems of a small watershed in British Columbia: Implications for hydraulic infrastructure design and stormwater management. University of British Columbia. https://dx.doi.org/10.14288/1.0063718

Laraque, A., Ronchail, J., Cochonneau, G., Pombosa, R., & Guyot, J. (2007). Heterogeneous distribution of rainfall and discharge regimes in the Ecuadorian Amazon Basin. Journal of Hydrometeorology, 8(6), 1364–1381. https://doi.org/10.1175/2007JHM784.1

Molina, A., Govers, G., Vanacker, V., Poesen, J., Zeelmaekers, E., & Cisneros, F. (2007). Runoff generation in a degraded Andean ecosystem: Interaction of vegetation cover and land use. Catena, 71(3), 357-370. https://doi.org/10.1016/j.catena.2007.04.002

Mora, D., Campozano, L., Cisneros, F., Wyseure, G., & Willems, P. (2013). Climate changes of hydrometeorological and hydrological extremes in the Paute basin, Ecuadorean Andes. Hydrology and Earth System Sciences, 18(2), 631-648. https://doi.org/10.5194/hess-18-631-2014

Perrin, J., & Bouvier, C. (2004). Rainfall – runoff modelling in the urban catchment of El Batan, Quito, Ecuador. Urban Water Journal, 1(4), 299-308. https://doi.org/10.1080/15730620412331299066

Rollenbeck, R., & Bendix, J. (2011). Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmospheric Research, 99(2), 277-289. https://doi.org/10.1016/J.ATMOSRES.2010.10.018

Sucozhañay, A., & Célleri, R. (2018). Impact of rain gauges distribution on the runoff simulation of a small mountain catchment in Southern Ecuador. Water. https://doi.org/10.3390/W10091169

Tousi, E. G., O’Brien, W. J., Doulabian, S., & Toosi, A. (2021). Climate changes impact on stormwater infrastructure design in Tucson, Arizona. Sustainable Cities and Society, 72, 103014. https://doi.org/10.1016/J.SCS.2021.103014

Verstraten, L., Wasko, C., Ashford, G., & Sharma, A. (2019). Sensitivity of Australian roof drainage structures to design rainfall variability and climatic change. Building and Environment. https://doi.org/10.1016/J.BUILDENV.2019.106230

Wilhere, G., Atha, J., Quinn, T., Tohver, I., & Helbrecht, L. (2017). Incorporating climate change into culvert design in Washington State, USA. Ecological Engineering, 104, 67-79. https://doi.org/10.1016/J.ECOLENG.2017.04.009

Yuan, T., Wang, S., Xu, D., Yuan, H., & Chen, H. (2017). Field and numerical experiment of an improved subsurface drainage system in Huaibei plain. Agricultural Water Management, 194, 24-32. https://doi.org/10.1016/J.AGWAT.2017.07.015

Zubieta, R., Getirana, A., Espinoza, J. C., & Lavado, W. (2015). Impacts of satellite-based precipitation datasets on rainfall–runoff modeling of the Western Amazon basin of Peru and Ecuador. Journal of Hydrology, 528, 599-612. https://doi.org/10.1016/J.JHYDROL.2015.06.064

Published

2025-01-10

How to Cite

Chancay-Mora, P. E., & Zambrano-Acosta, J. M. (2025). DESIGN OF CULVERT SIZING FOR THE PROTECTION OF THE STATE ROAD NETWORK E20, QUININDÉ – ESMERALDAS SECTION, ECUADOR. Scientific Journal INGENIAR: Engineering, Technology and Research, 8(15), 67-78. Retrieved from http://journalingeniar.org/index.php/ingeniar/article/view/278