OPTIMAL PROJECTION OF ELECTRICAL DEMAND OF THE COTOPAXI ELECTRICAL COMPANY

Authors

Keywords:

Electric demand, LEAP, Sustainable efficiency, Projection

Abstract

The article presents an analysis of the projected electricity demand in the province of Cotopaxi, utilizing the LEAP model to conduct a detailed projection of energy demand for the period 2022-2050. The research addresses the need to anticipate infrastructure requirements and assess the impact of energy efficiency policies. It is projected that electricity demand will increase from 381,657 PJ in 2022 to 692,754 PJ in 2050, reflecting an annual growth rate of 2%. Although rural demand currently predominates, a significant increase in urban demand is anticipated, rising from 23.1% in 2022 to 26.8% in 2050. These findings are crucial for sustainable energy planning, emphasizing the need to improve existing infrastructure and adopt energy efficiency measures to manage demand growth and reduce environmental impact. The results provide a solid foundation for the formulation of strategic energy policies in the region, ensuring an efficient and sustainable energy supply in the long term.

Keywords: Electric demand, LEAP, Sustainable efficiency, Projection.

References

Benito, A. O., & Arena, A. P. (2020). Distribuidos de Energía Eléctrica en Sistemas Energéticos Regionales: análisis con el modelo LEAP. AJEA, 5. https://doi.org/10.33414/ajea.5.696.2020

Cai, L., Guo, J., & Zhu, L. (2013). China’s Future Power Structure Analysis Based on LEAP. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(22), 2113–2122. https://doi.org/10.1080/15567036.2013.764361

David, I., Tamayo, H., Msc, S., Tania, A., & Aguayo, A. M. (n.d.). Challenging inequalities: a socio-cultural analysis of Cotopaxi province. https://doi.org/10.24133/recihys.v2i1.3487

Edgar M. Zapata, & Alvaro S. Mullo Q. (n.d.). PLANIFICACIÓN ÓPTIMA DE LOS RECURSOSENERGÉTICOS DE UNA MICRO-GENERACIÓN DISTRIBUIDA EN EL CANTÓN PUCAYACU COMO RED ELÉCTRICA ALTERNA. Retrieved July 11, 2024, from https://editorialalema.org/index.php/pentaciencias/article/view/675/941

Fontalvo, J., Ramírez, P., & Constante, J. (2018). Prospectiva de Autogeneración en el Ecuador mediante uso de Modelo LEAP. Revista Técnica “Energía,” 15(1). https://doi.org/10.37116/revistaenergia.v15.n1.2018.323

Guaman, J., & Bravo, S. (2021). PDYOT COTOPAXI. https://www.cotopaxi.gob.ec/images/Documentos/2021/PDYOT/PDYOT%20COTOPAXI%202021%20-%202025

Heaps, C. G. (2022). LEAP: The Low Emissions Analysis Platform. Stockholm Environment Institute.

Jha, S. K., & Puppala, H. (2017). Prospects of renewable energy sources in India: Prioritization of alternative sources in terms of Energy Index. Energy, 127, 116–127. https://doi.org/10.1016/j.energy.2017.03.110

Labein Tecnalia. (2007). Guía básica de la generación distribuida.

Meza Segura, J. N., & Luyo-Kuong, J. (2020). Metodología de Pronóstico de la Demanda Residencial para el Planeamiento Energético de Largo Plazo en el Perú. TECNIA, 30(2), 33–45. https://doi.org/10.21754/tecnia.v30i2.862

Mirjat, N. H., Uqaili, M. A., Harijan, K., Walasai, G. Das, Mondal, M. A. H., & Sahin, H. (2018). Long-term electricity demand forecast and supply side scenarios for Pakistan (2015–2050): A LEAP model application for policy analysis. Energy, 165, 512–526. https://doi.org/10.1016/J.ENERGY.2018.10.012

Pazmiño Ordóñez, I., Pico Mera, H., & Abril Chafla, A. (2019). Metodología para proyección de la demanda eléctrica en zonas con un desarrollo cercano a la saturación demográfica. Revista de Investigaciones En Energía, Medio Ambiente y Tecnología: RIEMAT ISSN: 2588-0721, 4(1), 52. https://doi.org/10.33936/riemat.v4i1.1946

S E I. (2005). Long-range Energy Alternatives Planning System User Guide for LEAP 2005. http://forums.seib.org/leap

Salazar, G., & Panchi, B. (2014). Análisis de la Evolución de la Demanda Eléctrica en el Ecuador Considerando el Ingreso de Proyectos de Eficiencia Energética. Revista EPN, 33.

Sepulveda, A., Zeghal, M., Kutter, B. L., Manzari, M. T., Abdoun, T., Escoffier, S., Haigh, S. K., Hung, W.-Y., Korre, E., Madabhushi, G. S. P., Manandhar, S., Okamura, M., Tobita, T., Ueda, K., & Zhou, Y.-G. (2024). Correlation of CPT measurements and relative density of LEAP-2017 and LEAP-2020 centrifuge models. Soil Dynamics and Earthquake Engineering, 181, 108639. https://doi.org/10.1016/j.soildyn.2024.108639

Sreekanth, K. J. (2016). Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives. Renewable and Sustainable Energy Reviews, 64, 837–850. https://doi.org/10.1016/j.rser.2016.06.086

Tastu, J. (2013). Short-term wind power forecasting: probabilistic and space-time aspects. Agencia de regulación y control de energía y recursos no renovables. (2022). SISDATBI. https://sisdatbi.controlrecursosyenergia.gob.ec/index.php

Zhang, C., & Luo, H. (2023). Research on carbon emission peak prediction and path of China’s public buildings: Scenario analysis based on LEAP model. Energy and Buildings, 289, 113053. https://doi.org/10.1016/j.enbuild.2023.113053

Published

2024-10-07

How to Cite

Masaquiza-Vera, C. L., Quinatoa-Caiza, C. I., & Paguay-Llamuca, A. I. (2024). OPTIMAL PROJECTION OF ELECTRICAL DEMAND OF THE COTOPAXI ELECTRICAL COMPANY. Scientific Journal INGENIAR: Engineering, Technology and Research, 7(14 Ed. esp.), 75-95. Retrieved from https://journalingeniar.org/index.php/ingeniar/article/view/235