Importancia del Coeficiente de Fricción para el Análisis de Seguridad Vial, en el tramo de carretera Jipijapa - La Pila de la provincia de Manabí

Autores/as

Palabras clave:

Mancha de Arena, Coeficiente de Fricción Longitudinal, Seguridad Vial, Textura del Pavimento, Mantenimiento Vial

Resumen

La seguridad vial es un desafío global, y el uso de herramientas como el análisis del coeficiente de fricción longitudinal (CFL) son esenciales para evaluar y mejorar las condiciones de las carreteras. Este estudio se centró en el tramo Jipijapa - La Pila en Ecuador, utilizando un enfoque cuantitativo para analizar el CFL mediante técnicas descriptivas y comparativas, incluyendo el ensayo de mancha de arena para evaluar la textura superficial del pavimento. Los resultados destacan la correlación directa entre la calidad del pavimento y la seguridad vial, mostrando la importancia de mantener adecuados niveles de fricción y textura para prevenir accidentes. El estudio mostró que el mantenimiento de las vías es fundamental para garantizar la seguridad y eficiencia de las redes viales, sugiriendo la necesidad de integrar prácticas de auditoría de seguridad vial más regulares y normativas en la gestión del pavimento. La comparación de los datos con normativas internacionales valida la metodología utilizada y resalta la eficacia de las intervenciones propuestas para mejorar la infraestructura vial en el contexto específico de Manabí.

Palabras clave: Mancha de Arena, Coeficiente de Fricción Longitudinal, Seguridad Vial, Textura del Pavimento, Mantenimiento Vial.

Abstract

Road safety is a global challenge, and the use of tools such as the International Roughness Index (IRI) and the analysis of the Longitudinal Friction Coefficient (CFL) are essential for assessing and improving road conditions. This study focused on the Jipijapa - La Pila segment in Ecuador, using a quantitative approach to analyze the CFL through descriptive and comparative techniques, including the sand patch test to assess the pavement's surface texture. The results highlight the direct correlation between pavement quality and road safety, underscoring the importance of maintaining adequate levels of friction and texture to prevent accidents. The study demonstrated that road maintenance is fundamental to ensuring the safety and efficiency of road networks, suggesting the need to integrate more regular and standardized road safety audit practices into pavement management. Comparing the data with international standards validates the methodology used and highlights the effectiveness of the proposed interventions to improve road infrastructure in the specific context of Manabí.

Keywords: Sand Patch, Longitudinal Friction Coefficient, Road Safety, Pavement Texture, Road Maintenance.

Información del manuscrito:
Fecha de recepción:
16 de enero de 2024.
Fecha de aceptación: 08 de marzo de 2024.
Fecha de publicación: 29 de abril de 2024.

Citas

Abdelaziz, N., El-Hakim, R. T. A., El-Badawy, S., & Afify, H. (2020). International Roughness Index prediction model for flexible pavements. International Journal of Pavement Engineering, 21, 88–99. https://doi.org/10.1080/10298436.2018.1441414

Ahn, C., Peng, H., & Tseng, H. E. (2011). Robust estimation of road friction coefficient. Proceedings of the 2011 American Control Conference, 3948–3953. https://doi.org/10.1109/TCST.2011.2170838

Ahn, C., Peng, H., & Tseng, H. E. (2012). Robust estimation of road friction coefficient using lateral and longitudinal vehicle dynamics. Vehicle System Dynamics, 50, 961–985. https://doi.org/10.1080/00423114.2012.659740

Choi, M., Oh, J., & Choi, S. B. (2013). Linearized Recursive Least Squares Methods for Real-Time Identification of Tire–Road Friction Coefficient. IEEE Transactions on Vehicular Technology, 62, 2906–2918. https://doi.org/10.1109/TVT.2013.2260190

D’Apuzzo, M., Evangelisti, A., & Nicolosi, V. (2020). An exploratory step for a general unified approach to labelling of road surface and tyre wet friction. Accident; Analysis and Prevention, 138, 105462. https://doi.org/10.1016/j.aap.2020.105462

Gardziejczyk, W. (2014). Influence of Road Pavement Macrotexture on Tyre/Road Noise of Vehicles. Baltic Journal of Road and Bridge Engineering, 9, 180–190. https://doi.org/10.3846/BJRBE.2014.23

Han, K., Lee, E., Choi, M., & Choi, S. B. (2017). Adaptive Scheme for the Real-Time Estimation of Tire-Road Friction Coefficient and Vehicle Velocity. IEEE/ASME Transactions on Mechatronics, 22, 1508–1518. https://doi.org/10.1109/TMECH.2017.2704606

Hsu, C.-H., Ni, S.-P., & Hsiao, T. (2022). Look-Up Table-Based Tire-Road Friction Coefficient Estimation of Each Driving Wheel. IEEE Control Systems Letters, 6, 2168–2173. https://doi.org/10.1109/lcsys.2021.3137722

Khanjari, M., Kordani, A. A., & Monajjem, S. (2022). Simulation and Modelling of Safety of Roadways in Reverse Horizontal Curves (RHCs): With Focus on Lateral Friction Coefficient. Journal of Advanced Transportation. https://doi.org/10.1155/2022/1952323

Li, H., Tang, B., Shao, D., Li, M., & Gao, J. (2010). Impact of Macrotexture Depth and Its Variation on Safety on Rainy Days. 484–495. https://doi.org/10.1061/41127(382)52

Lin, F. (2010). A New Method for Estimating Road Friction Coefficient. Advanced Materials Research, 139–141, 2622–2625. https://doi.org/10.4028/www.scientific.net/AMR.139-141.2622

Liu, Y., Li, T., Yang, Y., Ji, X., & Junshu, W. (2017). Estimation of tire-road friction coefficient based on combined APF-IEKF and iteration algorithm. Mechanical Systems and Signal Processing, 88, 25–35. https://doi.org/10.1016/J.YMSSP.2016.07.024

Rajamani, R., Piyabongkarn, D., Lew, J., & Grogg, J. A. (2006). Algorithms for Real-Time Estimation of Individual Wheel Tire-Road Friction Coefficients. IEEE/ASME Transactions on Mechatronics, 17, 1183–1195. https://doi.org/10.1109/ACC.2006.1657460

Rajamani, R., Piyabongkarn, D., Lew, J., Yi, K., & Phanomchoeng, G. (2010). Tire-Road Friction-Coefficient Estimation. IEEE Control Systems, 30, 54–69. https://doi.org/10.1109/MCS.2010.937006

Ren, H., Chen, S., Shim, T., & Wu, Z. (2014). Effective assessment of tyre–road friction coefficient using a hybrid estimator. Vehicle System Dynamics, 52, 1047–1065. https://doi.org/10.1080/00423114.2014.918629

Xu, G., Xu, J., Shan, H., Gao, C., Ran, J., Ma, Y., & Yao, Y. (2022). The influence of the pavement friction coefficient evolution caused by traffic flow on the risk of motorway horizontal curves. PLoS ONE, 17. https://doi.org/10.1371/journal.pone.0266519

Yu, F., Zhang, C., Xie, Q., Su, L., Zhao, T., & Jan, M. Q. (2020). Particle breakage of sand subjected to friction and collision in drum tests. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2020.08.004

Zamani, M., & Knez, D. (2021). A New Mechanical-Hydrodynamic Safety Factor Index for Sand Production Prediction. Energies, 14, 3130. https://doi.org/10.3390/EN14113130

Zhang, X., & Göhlich, D. (2017). A hierarchical estimator development for estimation of tire-road friction coefficient. PLoS ONE, 12. https://doi.org/10.1371/journal.pone.0171085

Descargas

Publicado

2024-04-29

Cómo citar

Moreno-Ponce, L. A., Álvarez-Álvarez, M. J., Delgado-Alvia, R. P., & Zavala-Vásquez, C. J. (2024). Importancia del Coeficiente de Fricción para el Análisis de Seguridad Vial, en el tramo de carretera Jipijapa - La Pila de la provincia de Manabí. Revista Científica INGENIAR: Ingeniería, Tecnología E Investigación. ISSN: 2737-6249., 7(13 Ed. esp.), 98-114. Recuperado a partir de https://journalingeniar.org/index.php/ingeniar/article/view/195